A financial services company uses multiple foundation models (FMs) through Amazon Bedrock for its generative AI (GenAI) applications. To comply with a new regulation for GenAI use with sensitive financial data, the company needs a token management solution.
The token management solution must proactively alert when applications approach model-specific token limits. The solution must also process more than 5,000 requests each minute and maintain token usage metrics to allocate costs across business units.
Which solution will meet these requirements?
A university recently digitized a collection of archival documents, academic journals, and manuscripts. The university stores the digital files in an AWS Lake Formation data lake.
The university hires a GenAI developer to build a solution to allow users to search the digital files by using text queries. The solution must return journal abstracts that are semantically similar to a user's query. Users must be able to search the digitized collection based on text and metadata that is associated with the journal abstracts. The metadata of the digitized files does not contain keywords. The solution must match similar abstracts to one another based on the similarity of their text. The data lake contains fewer than 1 million files.
Which solution will meet these requirements with the LEAST operational overhead?
A company is building a generative AI (GenAI) application that processes financial reports and provides summaries for analysts. The application must run two compute environments. In one environment, AWS Lambda functions must use the Python SDK to analyze reports on demand. In the second environment, Amazon EKS containers must use the JavaScript SDK to batch process multiple reports on a schedule. The application must maintain conversational context throughout multi-turn interactions, use the same foundation model (FM) across environments, and ensure consistent authentication.
Which solution will meet these requirements?
A healthcare company uses Amazon Bedrock to deploy an application that generates summaries of clinical documents. The application experiences inconsistent response quality with occasional factual hallucinations. Monthly costs exceed the company’s projections by 40%. A GenAI developer must implement a near real-time monitoring solution to detect hallucinations, identify abnormal token consumption, and provide early warnings of cost anomalies. The solution must require minimal custom development work and maintenance overhead.
Which solution will meet these requirements?
A company is building a generative AI (GenAI) application that uses Amazon Bedrock APIs to process complex customer inquiries. During peak usage periods, the application experiences intermittent API timeouts that cause issues such as broken response chunks and delayed data delivery. The application struggles to ensure that prompts remain within token limits when handling complex customer inquiries of varying lengths. Users have reported truncated inputs and incomplete responses. The company has also observed foundation model (FM) invocation failures.
The company needs a retry strategy that automatically handles transient service errors and prevents overwhelming Amazon Bedrock during peak usage periods. The strategy must also adapt to changing service availability and support response streaming and token-aware request handling.
Which solution will meet these requirements?
A healthcare company is using Amazon Bedrock to develop a real-time patient care AI assistant to respond to queries for separate departments that handle clinical inquiries, insurance verification, appointment scheduling, and insurance claims. The company wants to use a multi-agent architecture.
The company must ensure that the AI assistant is scalable and can onboard new features for patients. The AI assistant must be able to handle thousands of parallel patient interactions. The company must ensure that patients receive appropriate domain-specific responses to queries.
Which solution will meet these requirements?
A financial services company is creating a Retrieval Augmented Generation (RAG) application that uses Amazon Bedrock to generate summaries of market activities. The application relies on a vector database that stores a small proprietary dataset with a low index count. The application must perform similarity searches. The Amazon Bedrock model’s responses must maximize accuracy and maintain high performance.
The company needs to configure the vector database and integrate it with the application.
Which solution will meet these requirements?
A retail company has a generative AI (GenAI) product recommendation application that uses Amazon Bedrock. The application suggests products to customers based on browsing history and demographics. The company needs to implement fairness evaluation across multiple demographic groups to detect and measure bias in recommendations between two prompt approaches. The company wants to collect and monitor fairness metrics in real time. The company must receive an alert if the fairness metrics show a discrepancy of more than 15% between demographic groups. The company must receive weekly reports that compare the performance of the two prompt approaches.
Which solution will meet these requirements with the LEAST custom development effort?
A publishing company is developing a chat assistant that uses a containerized large language model (LLM) that runs on Amazon SageMaker AI. The architecture consists of an Amazon API Gateway REST API that routes user requests to an AWS Lambda function. The Lambda function invokes a SageMaker AI real-time endpoint that hosts the LLM.
Users report uneven response times. Analytics show that a high number of chats are abandoned after 2 seconds of waiting for the first token. The company wants a solution to ensure that p95 latency is under 800 ms for interactive requests to the chat assistant.
Which combination of solutions will meet this requirement? (Select TWO.)
A company is using Amazon Bedrock to design an application to help researchers apply for grants. The application is based on an Amazon Nova Pro foundation model (FM). The application contains four required inputs and must provide responses in a consistent text format. The company wants to receive a notification in Amazon Bedrock if a response contains bullying language. However, the company does not want to block all flagged responses.
The company creates an Amazon Bedrock flow that takes an input prompt and sends it to the Amazon Nova Pro FM. The Amazon Nova Pro FM provides a response.
Which additional steps must the company take to meet these requirements? (Select TWO.)