You need to set up the Permutation Feature Importance module according to the model training requirements.
Which properties should you select? To answer, select the appropriate options in the answer area.
NOTE: Each correct selection is worth one point.
You need to configure the Permutation Feature Importance module for the model training requirements.
What should you do? To answer, select the appropriate options in the dialog box in the answer area.
NOTE: Each correct selection is worth one point.
You need to configure the Edit Metadata module so that the structure of the datasets match.
Which configuration options should you select? To answer, select the appropriate options in the answer area.
NOTE: Each correct selection is worth one point.
You need to configure the Feature Based Feature Selection module based on the experiment requirements and datasets.
How should you configure the module properties? To answer, select the appropriate options in the dialog box in the answer area.
NOTE: Each correct selection is worth one point.
You need to correct the model fit issue.
Which three actions should you perform in sequence? To answer, move the appropriate actions from the list of actions to the answer area and arrange them in the correct order.
You deploy a real-time inference service for a trained model.
The deployed model supports a business-critical application, and it is important to be able to monitor the data submitted to the web service and the predictions the data generates.
You need to implement a monitoring solution for the deployed model using minimal administrative effort.
What should you do?
You plan to run a script as an experiment using a Script Run Configuration. The script uses modules from the scipy library as well as several Python packages that are not typically installed in a default conda environment.
You plan to run the experiment on your local workstation for small datasets and scale out the experiment by running it on more powerful remote compute clusters for larger datasets.
You need to ensure that the experiment runs successfully on local and remote compute with the least administrative effort.
What should you do?
Note: This question is part of a series of questions that present the same scenario. Each question in the series contains a unique solution that might meet the stated goals. Some question sets might have more than one correct solution, while others might not have a correct solution.
After you answer a question in this section, you will NOT be able to return to it. As a result, these questions will not appear in the review screen.
You have an Azure Machine Learning workspace. You connect to a terminal session from the Notebooks page in Azure Machine Learning studio.
You plan to add a new Jupyter kernel that will be accessible from the same terminal session.
You need to perform the task that must be completed before you can add the new kernel.
Solution: Delete the Python 3.8 - AzureML kernel.
Does the solution meet the goal?