Halloween Special 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: Board70

Changed Professional-Machine-Learning-Engineer Exam Questions

Page: 3 / 20
Question 12

You are creating a social media app where pet owners can post images of their pets. You have one million user uploaded images with hashtags. You want to build a comprehensive system that recommends images to users that are similar in appearance to their own uploaded images.

What should you do?

Options:

A.

Download a pretrained convolutional neural network, and fine-tune the model to predict hashtags based on the input images. Use the predicted hashtags to make recommendations.

B.

Retrieve image labels and dominant colors from the input images using the Vision API. Use these properties and the hashtags to make recommendations.

C.

Use the provided hashtags to create a collaborative filtering algorithm to make recommendations.

D.

Download a pretrained convolutional neural network, and use the model to generate embeddings of the input images. Measure similarity between embeddings to make recommendations.

Question 13

You have been asked to build a model using a dataset that is stored in a medium-sized (~10 GB) BigQuery table. You need to quickly determine whether this data is suitable for model development. You want to create a one-time report that includes both informative visualizations of data distributions and more sophisticated statistical analyses to share with other ML engineers on your team. You require maximum flexibility to create your report. What should you do?

Options:

A.

Use Vertex AI Workbench user-managed notebooks to generate the report.

B.

Use the Google Data Studio to create the report.

C.

Use the output from TensorFlow Data Validation on Dataflow to generate the report.

D.

Use Dataprep to create the report.

Question 14

You work for a semiconductor manufacturing company. You need to create a real-time application that automates the quality control process High-definition images of each semiconductor are taken at the end of the assembly line in real time. The photos are uploaded to a Cloud Storage bucket along with tabular data that includes each semiconductor's batch number serial number dimensions, and weight You need to configure model training and serving while maximizing model accuracy. What should you do?

Options:

A.

Use Vertex Al Data Labeling Service to label the images and train an AutoML image classification model.

Deploy the model and configure Pub/Sub to publish a message when an image is categorized into the failing class.

B.

Use Vertex Al Data Labeling Service to label the images and train an AutoML image classification model. Schedule a daily batch prediction job that publishes a Pub/Sub message when the job completes.

C.

Convert the images into an embedding representation Import this data into BigQuery, and train a BigQuery. ML K-means clustenng model with two clusters Deploy the model and configure Pub/Sub to publish a message when a semiconductor's data is categorized into the failing cluster.

D.

Import the tabular data into BigQuery use Vertex Al Data Labeling Service to label the data and train an AutoML tabular classification model Deploy the model and configure Pub/Sub to publish a message when a semiconductor's data is categorized into the failing class.

Question 15

You have trained an XGBoost model that you plan to deploy on Vertex Al for online prediction. You are now uploading your model to Vertex Al Model Registry, and you need to configure the explanation method that will serve online prediction requests to be returned with minimal latency. You also want to be alerted when feature attributions of the model meaningfully change over time. What should you do?

Options:

A.

1 Specify sampled Shapley as the explanation method with a path count of 5.

2 Deploy the model to Vertex Al Endpoints.

3. Create a Model Monitoring job that uses prediction drift as the monitoring objective.

B.

1 Specify Integrated Gradients as the explanation method with a path count of 5.

2 Deploy the model to Vertex Al Endpoints.

3. Create a Model Monitoring job that uses prediction drift as the monitoring objective.

C.

1. Specify sampled Shapley as the explanation method with a path count of 50.

2. Deploy the model to Vertex Al Endpoints.

3. Create a Model Monitoring job that uses training-serving skew as the monitoring objective.

D.

1 Specify Integrated Gradients as the explanation method with a path count of 50.

2. Deploy the model to Vertex Al Endpoints.

3 Create a Model Monitoring job that uses training-serving skew as the monitoring objective.

Page: 3 / 20
Exam Name: Google Professional Machine Learning Engineer
Last Update: Nov 1, 2024
Questions: 270
Professional-Machine-Learning-Engineer pdf

Professional-Machine-Learning-Engineer PDF

$24  $80
Professional-Machine-Learning-Engineer Engine

Professional-Machine-Learning-Engineer Testing Engine

$28.5  $95
Professional-Machine-Learning-Engineer PDF + Engine

Professional-Machine-Learning-Engineer PDF + Testing Engine

$39  $130