Halloween Special 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: Board70

Google Professional-Machine-Learning-Engineer Actual Questions

Page: 4 / 20
Question 16

You are developing a custom image classification model in Python. You plan to run your training application on Vertex Al Your input dataset contains several hundred thousand small images You need to determine how to store and access the images for training. You want to maximize data throughput and minimize training time while reducing the amount of additional code. What should you do?

Options:

A.

Store image files in Cloud Storage and access them directly.

B.

Store image files in Cloud Storage and access them by using serialized records.

C.

Store image files in Cloud Filestore, and access them by using serialized records.

D.

Store image files in Cloud Filestore and access them directly by using an NFS mount point.

Question 17

You are working with a dataset that contains customer transactions. You need to build an ML model to predict customer purchase behavior You plan to develop the model in BigQuery ML, and export it to Cloud Storage for online prediction You notice that the input data contains a few categorical features, including product category and payment method You want to deploy the model as quickly as possible. What should you do?

Options:

A.

Use the transform clause with the ML. ONE_HOT_ENCODER function on the categorical features at model creation and select the categorical and non-categorical features.

B.

Use the ML. ONE_HOT_ENCODER function on the categorical features, and select the encoded categorical features and non-categorical features as inputs to create your model.

C.

Use the create model statement and select the categorical and non-categorical features.

D.

Use the ML. ONE_HOT_ENCODER function on the categorical features, and select the encoded categorical features and non-categorical features as inputs to create your model.

Question 18

You work for a magazine publisher and have been tasked with predicting whether customers will cancel their annual subscription. In your exploratory data analysis, you find that 90% of individuals renew their subscription every year, and only 10% of individuals cancel their subscription. After training a NN Classifier, your model predicts those who cancel their subscription with 99% accuracy and predicts those who renew their subscription with 82% accuracy. How should you interpret these results?

Options:

A.

This is not a good result because the model should have a higher accuracy for those who renew their subscription than for those who cancel their subscription.

B.

This is not a good result because the model is performing worse than predicting that people will always renew their subscription.

C.

This is a good result because predicting those who cancel their subscription is more difficult, since there is less data for this group.

D.

This is a good result because the accuracy across both groups is greater than 80%.

Question 19

You are creating a deep neural network classification model using a dataset with categorical input values. Certain columns have a cardinality greater than 10,000 unique values. How should you encode these categorical values as input into the model?

Options:

A.

Convert each categorical value into an integer value.

B.

Convert the categorical string data to one-hot hash buckets.

C.

Map the categorical variables into a vector of boolean values.

D.

Convert each categorical value into a run-length encoded string.

Page: 4 / 20
Exam Name: Google Professional Machine Learning Engineer
Last Update: Oct 31, 2024
Questions: 270
Professional-Machine-Learning-Engineer pdf

Professional-Machine-Learning-Engineer PDF

$24  $80
Professional-Machine-Learning-Engineer Engine

Professional-Machine-Learning-Engineer Testing Engine

$28.5  $95
Professional-Machine-Learning-Engineer PDF + Engine

Professional-Machine-Learning-Engineer PDF + Testing Engine

$39  $130