4 of 55.
A developer is working on a Spark application that processes a large dataset using SQL queries. Despite having a large cluster, the developer notices that the job is underutilizing the available resources. Executors remain idle for most of the time, and logs reveal that the number of tasks per stage is very low. The developer suspects that this is causing suboptimal cluster performance.
Which action should the developer take to improve cluster utilization?
A developer is working with a pandas DataFrame containing user behavior data from a web application.
Which approach should be used for executing a groupBy operation in parallel across all workers in Apache Spark 3.5?
A)
Use the applylnPandas API
B)
C)
D)
Given the code:
df = spark.read.csv("large_dataset.csv")
filtered_df = df.filter(col("error_column").contains("error"))
mapped_df = filtered_df.select(split(col("timestamp"), " ").getItem(0).alias("date"), lit(1).alias("count"))
reduced_df = mapped_df.groupBy("date").sum("count")
reduced_df.count()
reduced_df.show()
At which point will Spark actually begin processing the data?
Given the code fragment:
import pyspark.pandas as ps
psdf = ps.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
Which method is used to convert a Pandas API on Spark DataFrame (pyspark.pandas.DataFrame) into a standard PySpark DataFrame (pyspark.sql.DataFrame)?
39 of 55.
A Spark developer is developing a Spark application to monitor task performance across a cluster.
One requirement is to track the maximum processing time for tasks on each worker node and consolidate this information on the driver for further analysis.
Which technique should the developer use?
2 of 55. Which command overwrites an existing JSON file when writing a DataFrame?
Which feature of Spark Connect is considered when designing an application to enable remote interaction with the Spark cluster?
A data engineer is working with a large JSON dataset containing order information. The dataset is stored in a distributed file system and needs to be loaded into a Spark DataFrame for analysis. The data engineer wants to ensure that the schema is correctly defined and that the data is read efficiently.
Which approach should the data scientist use to efficiently load the JSON data into a Spark DataFrame with a predefined schema?
A data engineer observes that an upstream streaming source sends duplicate records, where duplicates share the same key and have at most a 30-minute difference in event_timestamp. The engineer adds:
dropDuplicatesWithinWatermark("event_timestamp", "30 minutes")
What is the result?
How can a Spark developer ensure optimal resource utilization when running Spark jobs in Local Mode for testing?
Options: