Summer Limited Time 60% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: dealsixty

Data-Engineer-Associate Exam Dumps - Amazon Web Services AWS Certified Associate Questions and Answers

Question # 14

During a security review, a company identified a vulnerability in an AWS Glue job. The company discovered that credentials to access an Amazon Redshift cluster were hard coded in the job script.

A data engineer must remediate the security vulnerability in the AWS Glue job. The solution must securely store the credentials.

Which combination of steps should the data engineer take to meet these requirements? (Choose two.)

Options:

A.

Store the credentials in the AWS Glue job parameters.

B.

Store the credentials in a configuration file that is in an Amazon S3 bucket.

C.

Access the credentials from a configuration file that is in an Amazon S3 bucket by using the AWS Glue job.

D.

Store the credentials in AWS Secrets Manager.

E.

Grant the AWS Glue job 1AM role access to the stored credentials.

Buy Now
Question # 15

A company stores petabytes of data in thousands of Amazon S3 buckets in the S3 Standard storage class. The data supports analytics workloads that have unpredictable and variable data access patterns.

The company does not access some data for months. However, the company must be able to retrieve all data within milliseconds. The company needs to optimize S3 storage costs.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use S3 Storage Lens standard metrics to determine when to move objects to more cost-optimized storage classes. Create S3 Lifecycle policies for the S3 buckets to move objects to cost-optimized storage classes. Continue to refine the S3 Lifecycle policies in the future to optimize storage costs.

B.

Use S3 Storage Lens activity metrics to identify S3 buckets that the company accesses infrequently. Configure S3 Lifecycle rules to move objects from S3 Standard to the S3 Standard-Infrequent Access (S3 Standard-IA) and S3 Glacier storage classes based on the age of the data.

C.

Use S3 Intelligent-Tiering. Activate the Deep Archive Access tier.

D.

Use S3 Intelligent-Tiering. Use the default access tier.

Buy Now
Question # 16

A data engineer must build an extract, transform, and load (ETL) pipeline to process and load data from 10 source systems into 10 tables that are in an Amazon Redshift database. All the source systems generate .csv, JSON, or Apache Parquet files every 15 minutes. The source systems all deliver files into one Amazon S3 bucket. The file sizes range from 10 MB to 20 GB. The ETL pipeline must function correctly despite changes to the data schema.

Which data pipeline solutions will meet these requirements? (Choose two.)

Options:

A.

Use an Amazon EventBridge rule to run an AWS Glue job every 15 minutes. Configure the AWS Glue job to process and load the data into the Amazon Redshift tables.

B.

Use an Amazon EventBridge rule to invoke an AWS Glue workflow job every 15 minutes. Configure the AWS Glue workflow to have an on-demand trigger that runs an AWS Glue crawler and then runs an AWS Glue job when the crawler finishes running successfully. Configure the AWS Glue job to process and load the data into the Amazon Redshift tables.

C.

Configure an AWS Lambda function to invoke an AWS Glue crawler when a file is loaded into the S3 bucket. Configure an AWS Glue job to process and load the data into the Amazon Redshift tables. Create a second Lambda function to run the AWS Glue job. Create an Amazon EventBridge rule to invoke the second Lambda function when the AWS Glue crawler finishes running successfully.

D.

Configure an AWS Lambda function to invoke an AWS Glue workflow when a file is loaded into the S3 bucket. Configure the AWS Glue workflow to have an on-demand trigger that runs an AWS Glue crawler and then runs an AWS Glue job when the crawler finishes running successfully. Configure the AWS Glue job to process and load the data into the Amazon Redshift tables.

E.

Configure an AWS Lambda function to invoke an AWS Glue job when a file is loaded into the S3 bucket. Configure the AWS Glue job to read the files from the S3 bucket into an Apache Spark DataFrame. Configure the AWS Glue job to also put smaller partitions of the DataFrame into an Amazon Kinesis Data Firehose delivery stream. Configure the delivery stream to load data into the Amazon Redshift tables.

Buy Now
Question # 17

A company is designing a serverless data processing workflow in AWS Step Functions that involves multiple steps. The processing workflow ingests data from an external API, transforms the data by using multiple AWS Lambda functions, and loads the transformed data into Amazon DynamoDB.

The company needs the workflow to perform specific steps based on the content of the incoming data.

Which Step Functions state type should the company use to meet this requirement?

Options:

A.

Parallel

B.

Choice

C.

Task

D.

Map

Buy Now
Question # 18

An ecommerce company processes millions of orders each day. The company uses AWS Glue ETL to collect data from multiple sources, clean the data, and store the data in an Amazon S3 bucket in CSV format by using the S3 Standard storage class. The company uses the stored data to conduct daily analysis.

The company wants to optimize costs for data storage and retrieval.

Which solution will meet this requirement?

Options:

A.

Transition the data to Amazon S3 Glacier Flexible Retrieval.

B.

Transition the data from Amazon S3 to an Amazon Aurora cluster.

C.

Configure AWS Glue ETL to transform the incoming data to Apache Parquet format.

D.

Configure AWS Glue ETL to use Amazon EMR to process incoming data in parallel.

Buy Now
Question # 19

A company uses an Amazon QuickSight dashboard to monitor usage of one of the company's applications. The company uses AWS Glue jobs to process data for the dashboard. The company stores the data in a single Amazon S3 bucket. The company adds new data every day.

A data engineer discovers that dashboard queries are becoming slower over time. The data engineer determines that the root cause of the slowing queries is long-running AWS Glue jobs.

Which actions should the data engineer take to improve the performance of the AWS Glue jobs? (Choose two.)

Options:

A.

Partition the data that is in the S3 bucket. Organize the data by year, month, and day.

B.

Increase the AWS Glue instance size by scaling up the worker type.

C.

Convert the AWS Glue schema to the DynamicFrame schema class.

D.

Adjust AWS Glue job scheduling frequency so the jobs run half as many times each day.

E.

Modify the 1AM role that grants access to AWS glue to grant access to all S3 features.

Buy Now
Question # 20

A company stores customer data in an Amazon S3 bucket. Multiple teams in the company want to use the customer data for downstream analysis. The company needs to ensure that the teams do not have access to personally identifiable information (PII) about the customers.

Which solution will meet this requirement with LEAST operational overhead?

Options:

A.

Use Amazon Macie to create and run a sensitive data discovery job to detect and remove PII.

B.

Use S3 Object Lambda to access the data, and use Amazon Comprehend to detect and remove PII.

C.

Use Amazon Kinesis Data Firehose and Amazon Comprehend to detect and remove PII.

D.

Use an AWS Glue DataBrew job to store the PII data in a second S3 bucket. Perform analysis on the data that remains in the original S3 bucket.

Buy Now
Question # 21

A healthcare company uses Amazon Kinesis Data Streams to stream real-time health data from wearable devices, hospital equipment, and patient records.

A data engineer needs to find a solution to process the streaming data. The data engineer needs to store the data in an Amazon Redshift Serverless warehouse. The solution must support near real-time analytics of the streaming data and the previous day's data.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Load data into Amazon Kinesis Data Firehose. Load the data into Amazon Redshift.

B.

Use the streaming ingestion feature of Amazon Redshift.

C.

Load the data into Amazon S3. Use the COPY command to load the data into Amazon Redshift.

D.

Use the Amazon Aurora zero-ETL integration with Amazon Redshift.

Buy Now
Question # 22

A company stores data from an application in an Amazon DynamoDB table that operates in provisioned capacity mode. The workloads of the application have predictable throughput load on a regular schedule. Every Monday, there is an immediate increase in activity early in the morning. The application has very low usage during weekends.

The company must ensure that the application performs consistently during peak usage times.

Which solution will meet these requirements in the MOST cost-effective way?

Options:

A.

Increase the provisioned capacity to the maximum capacity that is currently present during peak load times.

B.

Divide the table into two tables. Provision each table with half of the provisioned capacity of the original table. Spread queries evenly across both tables.

C.

Use AWS Application Auto Scaling to schedule higher provisioned capacity for peak usage times. Schedule lower capacity during off-peak times.

D.

Change the capacity mode from provisioned to on-demand. Configure the table to scale up and scale down based on the load on the table.

Buy Now
Question # 23

A data engineer configured an AWS Glue Data Catalog for data that is stored in Amazon S3 buckets. The data engineer needs to configure the Data Catalog to receive incremental updates.

The data engineer sets up event notifications for the S3 bucket and creates an Amazon Simple Queue Service (Amazon SQS) queue to receive the S3 events.

Which combination of steps should the data engineer take to meet these requirements with LEAST operational overhead? (Select TWO.)

Options:

A.

Create an S3 event-based AWS Glue crawler to consume events from the SQS queue.

B.

Define a time-based schedule to run the AWS Glue crawler, and perform incremental updates to the Data Catalog.

C.

Use an AWS Lambda function to directly update the Data Catalog based on S3 events that the SQS queue receives.

D.

Manually initiate the AWS Glue crawler to perform updates to the Data Catalog when there is a change in the S3 bucket.

E.

Use AWS Step Functions to orchestrate the process of updating the Data Catalog based on 53 events that the SQS queue receives.

Buy Now
Exam Name: AWS Certified Data Engineer - Associate (DEA-C01)
Last Update: Jun 15, 2025
Questions: 174
Data-Engineer-Associate pdf

Data-Engineer-Associate PDF

$34  $84.99
Data-Engineer-Associate Engine

Data-Engineer-Associate Testing Engine

$38  $94.99
Data-Engineer-Associate PDF + Engine

Data-Engineer-Associate PDF + Testing Engine

$54  $134.99