Month End Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: Board70

Data-Engineer-Associate Exam Dumps - Amazon Web Services AWS Certified Data Engineer Questions and Answers

Question # 54

A company stores customer records in Amazon S3. The company must not delete or modify the customer record data for 7 years after each record is created. The root user also must not have the ability to delete or modify the data.

A data engineer wants to use S3 Object Lock to secure the data.

Which solution will meet these requirements?

Options:

A.

Enable governance mode on the S3 bucket. Use a default retention period of 7 years.

B.

Enable compliance mode on the S3 bucket. Use a default retention period of 7 years.

C.

Place a legal hold on individual objects in the S3 bucket. Set the retention period to 7 years.

D.

Set the retention period for individual objects in the S3 bucket to 7 years.

Buy Now
Question # 55

A company has a data lake in Amazon 53. The company uses AWS Glue to catalog data and AWS Glue Studio to implement data extract, transform, and load (ETL) pipelines.

The company needs to ensure that data quality issues are checked every time the pipelines run. A data engineer must enhance the existing pipelines to evaluate data quality rules based on predefined thresholds.

Which solution will meet these requirements with the LEAST implementation effort?

Options:

A.

Add a new transform that is defined by a SQL query to each Glue ETL job. Use the SQL query to implement a ruleset that includes the data quality rules that need to be evaluated.

B.

Add a new Evaluate Data Quality transform to each Glue ETL job. Use Data Quality Definition Language (DQDL) to implement a ruleset that includes the data quality rules that need to be evaluated.

C.

Add a new custom transform to each Glue ETL job. Use the PyDeequ library to implement a ruleset that includes the data quality rules that need to be evaluated.

D.

Add a new custom transform to each Glue ETL job. Use the Great Expectations library to implement a ruleset that includes the data quality rules that need to be evaluated.

Buy Now
Question # 56

A company is setting up a data pipeline in AWS. The pipeline extracts client data from Amazon S3 buckets, performs quality checks, and transforms the data. The pipeline stores the processed data in a relational database. The company will use the processed data for future queries.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Use AWS Glue ETL to extract the data from the S3 buckets and perform the transformations. Use AWS Glue Data Quality to enforce suggested quality rules. Load the data and the quality check results into an Amazon RDS for MySQL instance.

B.

Use AWS Glue Studio to extract the data from the S3 buckets. Use AWS Glue DataBrew to perform the transformations and quality checks. Load the processed data into an Amazon RDS for MySQL instance. Load the quality check results into a new S3 bucket.

C.

Use AWS Glue ETL to extract the data from the S3 buckets and perform the transformations. Use AWS Glue DataBrew to perform quality checks. Load the processed data and the quality check results into a new S3 bucket.

D.

Use AWS Glue Studio to extract the data from the S3 buckets. Use AWS Glue DataBrew to perform the transformations and quality checks. Load the processed data and quality check results into an Amazon RDS for MySQL instance.

Buy Now
Question # 57

A company uses Amazon DataZone as a data governance and business catalog solution. The company stores data in an Amazon S3 data lake. The company uses AWS Glue with an AWS Glue Data Catalog.

A data engineer needs to publish AWS Glue Data Quality scores to the Amazon DataZone portal.

Which solution will meet this requirement?

Options:

A.

Create a data quality ruleset with Data Quality Definition Language (DQDL) rules that apply to a specific AWS Glue table. Schedule the ruleset to run daily. Configure the Amazon DataZone project to have an Amazon Redshift data source. Enable the data quality configuration for the data source.

B.

Configure AWS Glue ETL jobs to use an Evaluate Data Quality transform. Define a data quality ruleset inside the jobs. Configure the Amazon DataZone project to have an AWS Glue data source. Enable the data quality configuration for the data source.

C.

Create a data quality ruleset with Data Quality Definition Language (DQDL) rules that apply to a specific AWS Glue table. Schedule the ruleset to run daily. Configure the Amazon DataZone project to have an AWS Glue data source. Enable the data quality configuration for the data source.

D.

Configure AWS Glue ETL jobs to use an Evaluate Data Quality transform. Define a data quality ruleset inside the jobs. Configure the Amazon DataZone project to have an Amazon Redshift data source. Enable the data quality configuration for the data source.

Buy Now
Question # 58

A company loads transaction data for each day into Amazon Redshift tables at the end of each day. The company wants to have the ability to track which tables have been loaded and which tables still need to be loaded.

A data engineer wants to store the load statuses of Redshift tables in an Amazon DynamoDB table. The data engineer creates an AWS Lambda function to publish the details of the load statuses to DynamoDB.

How should the data engineer invoke the Lambda function to write load statuses to the DynamoDB table?

Options:

A.

Use a second Lambda function to invoke the first Lambda function based on Amazon CloudWatch events.

B.

Use the Amazon Redshift Data API to publish an event to Amazon EventBridqe. Configure an EventBridge rule to invoke the Lambda function.

C.

Use the Amazon Redshift Data API to publish a message to an Amazon Simple Queue Service (Amazon SQS) queue. Configure the SQS queue to invoke the Lambda function.

D.

Use a second Lambda function to invoke the first Lambda function based on AWS CloudTrail events.

Buy Now
Question # 59

A company is migrating a legacy application to an Amazon S3 based data lake. A data engineer reviewed data that is associated with the legacy application. The data engineer found that the legacy data contained some duplicate information.

The data engineer must identify and remove duplicate information from the legacy application data.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Write a custom extract, transform, and load (ETL) job in Python. Use the DataFramedrop duplicatesf) function by importing the Pandas library to perform data deduplication.

B.

Write an AWS Glue extract, transform, and load (ETL) job. Use the FindMatches machine learning (ML) transform to transform the data to perform data deduplication.

C.

Write a custom extract, transform, and load (ETL) job in Python. Import the Python dedupe library. Use the dedupe library to perform data deduplication.

D.

Write an AWS Glue extract, transform, and load (ETL) job. Import the Python dedupe library. Use the dedupe library to perform data deduplication.

Buy Now
Question # 60

A car sales company maintains data about cars that are listed for sale in an area. The company receives data about new car listings from vendors who upload the data daily as compressed files into Amazon S3. The compressed files are up to 5 KB in size. The company wants to see the most up-to-date listings as soon as the data is uploaded to Amazon S3.

A data engineer must automate and orchestrate the data processing workflow of the listings to feed a dashboard. The data engineer must also provide the ability to perform one-time queries and analytical reporting. The query solution must be scalable.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Use an Amazon EMR cluster to process incoming data. Use AWS Step Functions to orchestrate workflows. Use Apache Hive for one-time queries and analytical reporting. Use Amazon OpenSearch Service to bulk ingest the data into compute optimized instances. Use OpenSearch Dashboards in OpenSearch Service for the dashboard.

B.

Use a provisioned Amazon EMR cluster to process incoming data. Use AWS Step Functions to orchestrate workflows. Use Amazon Athena for one-time queries and analytical reporting. Use Amazon QuickSight for the dashboard.

C.

Use AWS Glue to process incoming data. Use AWS Step Functions to orchestrate workflows. Use Amazon Redshift Spectrum for one-time queries and analytical reporting. Use OpenSearch Dashboards in Amazon OpenSearch Service for the dashboard.

D.

Use AWS Glue to process incoming data. Use AWS Lambda and S3 Event Notifications to orchestrate workflows. Use Amazon Athena for one-time queries and analytical reporting. Use Amazon QuickSight for the dashboard.

Buy Now
Question # 61

The company stores a large volume of customer records in Amazon S3. To comply with regulations, the company must be able to access new customer records immediately for the first 30 days after the records are created. The company accesses records that are older than 30 days infrequently.

The company needs to cost-optimize its Amazon S3 storage.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Apply a lifecycle policy to transition records to S3 Standard Infrequent-Access (S3 Standard-IA) storage after 30 days.

B.

Use S3 Intelligent-Tiering storage.

C.

Transition records to S3 Glacier Deep Archive storage after 30 days.

D.

Use S3 Standard-Infrequent Access (S3 Standard-IA) storage for all customer records.

Buy Now
Question # 62

A data engineer is implementing model governance for machine learning (ML) workflows on AWS. The data engineer needs a solution that can track the complete lifecycle of the ML models, including data preparation, model training, and deployment stages. The solution must ensure reproducibility and audit compliance.

Options:

A.

Use Amazon SageMaker Debugger to capture metrics. Create associations between datasets and training jobs by monitoring training jobs.

B.

Use Amazon SageMaker ML Lineage Tracking to create associations between artifacts, training jobs, and datasets by recording metadata.

C.

Use Amazon SageMaker Model Monitor to create associations between artifacts and training jobs by tracking model performance.

D.

Use Amazon SageMaker Experiments to create associations between datasets and artifacts by tracking hyperparameters and metrics.

Buy Now
Question # 63

A data engineer wants to orchestrate a set of extract, transform, and load (ETL) jobs that run on AWS. The ETL jobs contain tasks that must run Apache Spark jobs on Amazon EMR, make API calls to Salesforce, and load data into Amazon Redshift.

The ETL jobs need to handle failures and retries automatically. The data engineer needs to use Python to orchestrate the jobs.

Which service will meet these requirements?

Options:

A.

Amazon Managed Workflows for Apache Airflow (Amazon MWAA)

B.

AWS Step Functions

C.

AWS Glue

D.

Amazon EventBridge

Buy Now
Exam Name: AWS Certified Data Engineer - Associate (DEA-C01)
Last Update: Feb 1, 2026
Questions: 231
Data-Engineer-Associate pdf

Data-Engineer-Associate PDF

$25.5  $84.99
Data-Engineer-Associate Engine

Data-Engineer-Associate Testing Engine

$28.5  $94.99
Data-Engineer-Associate PDF + Engine

Data-Engineer-Associate PDF + Testing Engine

$40.5  $134.99