Month End Sale 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: Board70

Data-Engineer-Associate Exam Dumps - Amazon Web Services AWS Certified Data Engineer Questions and Answers

Question # 24

A company stores details about transactions in an Amazon S3 bucket. The company wants to log all writes to the S3 bucket into another S3 bucket that is in the same AWS Region.

Which solution will meet this requirement with the LEAST operational effort?

Options:

A.

Configure an S3 Event Notifications rule for all activities on the transactions S3 bucket to invoke an AWS Lambda function. Program the Lambda function to write the event to Amazon Kinesis Data Firehose. Configure Kinesis Data Firehose to write the event to the logs S3 bucket.

B.

Create a trail of management events in AWS CloudTraiL. Configure the trail to receive data from the transactions S3 bucket. Specify an empty prefix and write-only events. Specify the logs S3 bucket as the destination bucket.

C.

Configure an S3 Event Notifications rule for all activities on the transactions S3 bucket to invoke an AWS Lambda function. Program the Lambda function to write the events to the logs S3 bucket.

D.

Create a trail of data events in AWS CloudTraiL. Configure the trail to receive data from the transactions S3 bucket. Specify an empty prefix and write-only events. Specify the logs S3 bucket as the destination bucket.

Buy Now
Question # 25

A company uses an Amazon Redshift cluster that runs on RA3 nodes. The company wants to scale read and write capacity to meet demand. A data engineer needs to identify a solution that will turn on concurrency scaling.

Which solution will meet this requirement?

Options:

A.

Turn on concurrency scaling in workload management (WLM) for Redshift Serverless workgroups.

B.

Turn on concurrency scaling at the workload management (WLM) queue level in the Redshift cluster.

C.

Turn on concurrency scaling in the settings during the creation of and new Redshift cluster.

D.

Turn on concurrency scaling for the daily usage quota for the Redshift cluster.

Buy Now
Question # 26

A company needs to load customer data that comes from a third party into an Amazon Redshift data warehouse. The company stores order data and product data in the same data warehouse. The company wants to use the combined dataset to identify potential new customers.

A data engineer notices that one of the fields in the source data includes values that are in JSON format.

How should the data engineer load the JSON data into the data warehouse with the LEAST effort?

Options:

A.

Use the SUPER data type to store the data in the Amazon Redshift table.

B.

Use AWS Glue to flatten the JSON data and ingest it into the Amazon Redshift table.

C.

Use Amazon S3 to store the JSON data. Use Amazon Athena to query the data.

D.

Use an AWS Lambda function to flatten the JSON data. Store the data in Amazon S3.

Buy Now
Question # 27

A healthcare company uses Amazon Kinesis Data Streams to stream real-time health data from wearable devices, hospital equipment, and patient records.

A data engineer needs to find a solution to process the streaming data. The data engineer needs to store the data in an Amazon Redshift Serverless warehouse. The solution must support near real-time analytics of the streaming data and the previous day's data.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Load data into Amazon Kinesis Data Firehose. Load the data into Amazon Redshift.

B.

Use the streaming ingestion feature of Amazon Redshift.

C.

Load the data into Amazon S3. Use the COPY command to load the data into Amazon Redshift.

D.

Use the Amazon Aurora zero-ETL integration with Amazon Redshift.

Buy Now
Question # 28

Two developers are working on separate application releases. The developers have created feature branches named Branch A and Branch B by using a GitHub repository's master branch as the source.

The developer for Branch A deployed code to the production system. The code for Branch B will merge into a master branch in the following week's scheduled application release.

Which command should the developer for Branch B run before the developer raises a pull request to the master branch?

Options:

A.

git diff branchB mastergit commit -m

B.

git pull master

C.

git rebase master

D.

git fetch -b master

Buy Now
Question # 29

A company analyzes data in a data lake every quarter to perform inventory assessments. A data engineer uses AWS Glue DataBrew to detect any personally identifiable information (PII) about customers within the data. The company's privacy policy considers some custom categories of information to be PII. However, the categories are not included in standard DataBrew data quality rules.

The data engineer needs to modify the current process to scan for the custom PII categories across multiple datasets within the data lake.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Manually review the data for custom PII categories.

B.

Implement custom data quality rules in Data Brew. Apply the custom rules across datasets.

C.

Develop custom Python scripts to detect the custom PII categories. Call the scripts from DataBrew.

D.

Implement regex patterns to extract PII information from fields during extract transform, and load (ETL) operations into the data lake.

Buy Now
Question # 30

A company uses an on-premises Microsoft SQL Server database to store financial transaction data. The company migrates the transaction data from the on-premises database to AWS at the end of each month. The company has noticed that the cost to migrate data from the on-premises database to an Amazon RDS for SQL Server database has increased recently.

The company requires a cost-effective solution to migrate the data to AWS. The solution must cause minimal downtown for the applications that access the database.

Which AWS service should the company use to meet these requirements?

Options:

A.

AWS Lambda

B.

AWS Database Migration Service (AWS DMS)

C.

AWS Direct Connect

D.

AWS DataSync

Buy Now
Question # 31

A company uses Amazon Redshift as its data warehouse service. A data engineer needs to design a physical data model.

The data engineer encounters a de-normalized table that is growing in size. The table does not have a suitable column to use as the distribution key.

Which distribution style should the data engineer use to meet these requirements with the LEAST maintenance overhead?

Options:

A.

ALL distribution

B.

EVEN distribution

C.

AUTO distribution

D.

KEY distribution

Buy Now
Question # 32

A data engineer needs to create an Amazon Athena table based on a subset of data from an existing Athena table named cities_world. The cities_world table contains cities that are located around the world. The data engineer must create a new table named cities_us to contain only the cities from cities_world that are located in the US.

Which SQL statement should the data engineer use to meet this requirement?

Options:

A.

Option A

B.

Option B

C.

Option C

D.

Option D

Buy Now
Question # 33

A data engineer must build an extract, transform, and load (ETL) pipeline to process and load data from 10 source systems into 10 tables that are in an Amazon Redshift database. All the source systems generate .csv, JSON, or Apache Parquet files every 15 minutes. The source systems all deliver files into one Amazon S3 bucket. The file sizes range from 10 MB to 20 GB. The ETL pipeline must function correctly despite changes to the data schema.

Which data pipeline solutions will meet these requirements? (Choose two.)

Options:

A.

Use an Amazon EventBridge rule to run an AWS Glue job every 15 minutes. Configure the AWS Glue job to process and load the data into the Amazon Redshift tables.

B.

Use an Amazon EventBridge rule to invoke an AWS Glue workflow job every 15 minutes. Configure the AWS Glue workflow to have an on-demand trigger that runs an AWS Glue crawler and then runs an AWS Glue job when the crawler finishes running successfully. Configure the AWS Glue job to process and load the data into the Amazon Redshift tables.

C.

Configure an AWS Lambda function to invoke an AWS Glue crawler when a file is loaded into the S3 bucket. Configure an AWS Glue job to process and load the data into the Amazon Redshift tables. Create a second Lambda function to run the AWS Glue job. Create an Amazon EventBridge rule to invoke the second Lambda function when the AWS Glue crawler finishes running successfully.

D.

Configure an AWS Lambda function to invoke an AWS Glue workflow when a file is loaded into the S3 bucket. Configure the AWS Glue workflow to have an on-demand trigger that runs an AWS Glue crawler and then runs an AWS Glue job when the crawler finishes running successfully. Configure the AWS Glue job to process and load the data into the Amazon Redshift tables.

E.

Configure an AWS Lambda function to invoke an AWS Glue job when a file is loaded into the S3 bucket. Configure the AWS Glue job to read the files from the S3 bucket into an Apache Spark DataFrame. Configure the AWS Glue job to also put smaller partitions of the DataFrame into an Amazon Kinesis Data Firehose delivery stream. Configure the delivery stream to load data into the Amazon Redshift tables.

Buy Now
Exam Name: AWS Certified Data Engineer - Associate (DEA-C01)
Last Update: Feb 1, 2026
Questions: 231
Data-Engineer-Associate pdf

Data-Engineer-Associate PDF

$25.5  $84.99
Data-Engineer-Associate Engine

Data-Engineer-Associate Testing Engine

$28.5  $94.99
Data-Engineer-Associate PDF + Engine

Data-Engineer-Associate PDF + Testing Engine

$40.5  $134.99