An agriculture company wants to improve crop yield forecasting for the upcoming season by using crop yields from the last three seasons. The company wants to compare the performance of its new scikit-learn model to the benchmark.
A data scientist needs to package the code into a container that computes both the new model forecast and the benchmark.
The data scientist wants AWS to be responsible for the operational maintenance of the container.
Which solution will meet these requirements?
While reviewing the histogram for residuals on regression evaluation data a Machine Learning Specialist notices that the residuals do not form a zero-centered bell shape as shown What does this mean?
A company needs to deploy a chatbot to answer common questions from customers. The chatbot must base its answers on company documentation.
Which solution will meet these requirements with the LEAST development effort?
An aircraft engine manufacturing company is measuring 200 performance metrics in a time-series. Engineers
want to detect critical manufacturing defects in near-real time during testing. All of the data needs to be stored
for offline analysis.
What approach would be the MOST effective to perform near-real time defect detection?
A machine learning (ML) developer for an online retailer recently uploaded a sales dataset into Amazon SageMaker Studio. The ML developer wants to obtain importance scores for each feature of the dataset. The ML developer will use the importance scores to feature engineer the dataset.
Which solution will meet this requirement with the LEAST development effort?
A Machine Learning Specialist is building a prediction model for a large number of features using linear models, such as linear regression and logistic regression During exploratory data analysis the Specialist observes that many features are highly correlated with each other This may make the model unstable
What should be done to reduce the impact of having such a large number of features?
A data scientist must build a custom recommendation model in Amazon SageMaker for an online retail company. Due to the nature of the company's products, customers buy only 4-5 products every 5-10 years. So, the company relies on a steady stream of new customers. When a new customer signs up, the company collects data on the customer's preferences. Below is a sample of the data available to the data scientist.
How should the data scientist split the dataset into a training and test set for this use case?
The displayed graph is from a foresting model for testing a time series.
Considering the graph only, which conclusion should a Machine Learning Specialist make about the behavior of the model?
A media company wants to deploy a machine learning (ML) model that uses Amazon SageMaker to recommend new articles to the company's readers. The company's readers are primarily located in a single city.
The company notices that the heaviest reader traffic predictably occurs early in the morning, after lunch, and again after work hours. There is very little traffic at other times of day. The media company needs to minimize the time required to deliver recommendations to its readers. The expected amount of data that the API call will return for inference is less than 4 MB.
Which solution will meet these requirements in the MOST cost-effective way?
A Machine Learning Specialist wants to bring a custom algorithm to Amazon SageMaker. The Specialist
implements the algorithm in a Docker container supported by Amazon SageMaker.
How should the Specialist package the Docker container so that Amazon SageMaker can launch the training
correctly?