Summer Limited Time 60% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: dealsixty

MLS-C01 Exam Dumps - Amazon Web Services AWS Certified Specialty Questions and Answers

Question # 94

A health care company is planning to use neural networks to classify their X-ray images into normal and abnormal classes. The labeled data is divided into a training set of 1,000 images and a test set of 200 images. The initial training of a neural network model with 50 hidden layers yielded 99% accuracy on the training set, but only 55% accuracy on the test set.

What changes should the Specialist consider to solve this issue? (Choose three.)

Options:

A.

Choose a higher number of layers

B.

Choose a lower number of layers

C.

Choose a smaller learning rate

D.

Enable dropout

E.

Include all the images from the test set in the training set

F.

Enable early stopping

Buy Now
Question # 95

A Machine Learning Specialist is packaging a custom ResNet model into a Docker container so the company can leverage Amazon SageMaker for training. The Specialist is using Amazon EC2 P3 instances to train the model and needs to properly configure the Docker container to leverage the NVIDIA GPUs.

What does the Specialist need to do?

Options:

A.

Bundle the NVIDIA drivers with the Docker image.

B.

Build the Docker container to be NVIDIA-Docker compatible.

C.

Organize the Docker container's file structure to execute on GPU instances.

D.

Set the GPU flag in the Amazon SageMaker CreateTrainingJob request body

Buy Now
Question # 96

A manufacturing company uses machine learning (ML) models to detect quality issues. The models use images that are taken of the company's product at the end of each production step. The company has thousands of machines at the production site that generate one image per second on average.

The company ran a successful pilot with a single manufacturing machine. For the pilot, ML specialists used an industrial PC that ran AWS IoT Greengrass with a long-running AWS Lambda function that uploaded the images to Amazon S3. The uploaded images invoked a Lambda function that was written in Python to perform inference by using an Amazon SageMaker endpoint that ran a custom model. The inference results were forwarded back to a web service that was hosted at the production site to prevent faulty products from being shipped.

The company scaled the solution out to all manufacturing machines by installing similarly configured industrial PCs on each production machine. However, latency for predictions increased beyond acceptable limits. Analysis shows that the internet connection is at its capacity limit.

How can the company resolve this issue MOST cost-effectively?

Options:

A.

Set up a 10 Gbps AWS Direct Connect connection between the production site and the nearest AWS Region. Use the Direct Connect connection to upload the images. Increase the size of the instances and the number of instances that are used by the SageMaker endpoint.

B.

Extend the long-running Lambda function that runs on AWS IoT Greengrass to compress the images and upload the compressed files to Amazon S3. Decompress the files by using a separate Lambda function that invokes the existing Lambda function to run the inference pipeline.

C.

Use auto scaling for SageMaker. Set up an AWS Direct Connect connection between the production site and the nearest AWS Region. Use the Direct Connect connection to upload the images.

D.

Deploy the Lambda function and the ML models onto the AWS IoT Greengrass core that is running on the industrial PCs that are installed on each machine. Extend the long-running Lambda function that runs on AWS IoT Greengrass to invoke the Lambda function with the captured images and run the inference on the edge component that forwards the results directly to the web service.

Buy Now
Question # 97

A Machine Learning Specialist is working with a media company to perform classification on popular articles from the company's website. The company is using random forests to classify how popular an article will be before it is published A sample of the data being used is below.

Given the dataset, the Specialist wants to convert the Day-Of_Week column to binary values.

What technique should be used to convert this column to binary values.

Options:

A.

Binarization

B.

One-hot encoding

C.

Tokenization

D.

Normalization transformation

Buy Now
Question # 98

A data scientist is using an Amazon SageMaker notebook instance and needs to securely access data stored in a specific Amazon S3 bucket.

How should the data scientist accomplish this?

Options:

A.

Add an S3 bucket policy allowing GetObject, PutObject, and ListBucket permissions to the Amazon SageMaker notebook ARN as principal.

B.

Encrypt the objects in the S3 bucket with a custom AWS Key Management Service (AWS KMS) key that only the notebook owner has access to.

C.

Attach the policy to the IAM role associated with the notebook that allows GetObject, PutObject, and ListBucket operations to the specific S3 bucket.

D.

Use a script in a lifecycle configuration to configure the AWS CLI on the instance with an access key ID and secret.

Buy Now
Question # 99

A company wants to predict the classification of documents that are created from an application. New documents are saved to an Amazon S3 bucket every 3 seconds. The company has developed three versions of a machine learning (ML) model within Amazon SageMaker to classify document text. The company wants to deploy these three versions to predict the classification of each document.

Which approach will meet these requirements with the LEAST operational overhead?

Options:

A.

Configure an S3 event notification that invokes an AWS Lambda function when new documents are created. Configure the Lambda function to create three SageMaker batch transform jobs, one batch transform job for each model for each document.

B.

Deploy all the models to a single SageMaker endpoint. Treat each model as a production variant. Configure an S3 event notification that invokes an AWS Lambda function when new documents are created. Configure the Lambda function to call each production variant and return the results of each model.

C.

Deploy each model to its own SageMaker endpoint Configure an S3 event notification that invokes an AWS Lambda function when new documents are created. Configure the Lambda function to call each endpoint and return the results of each model.

D.

Deploy each model to its own SageMaker endpoint. Create three AWS Lambda functions. Configure each Lambda function to call a different endpoint and return the results. Configure three S3 event notifications to invoke the Lambda functions when new documents are created.

Buy Now
Question # 100

A Data Engineer needs to build a model using a dataset containing customer credit card information.

How can the Data Engineer ensure the data remains encrypted and the credit card information is secure?

Options:

A.

Use a custom encryption algorithm to encrypt the data and store the data on an Amazon SageMakerinstance in a VPC. Use the SageMaker DeepAR algorithm to randomize the credit card numbers.

B.

Use an IAM policy to encrypt the data on the Amazon S3 bucket and Amazon Kinesis to automaticallydiscard credit card numbers and insert fake credit card numbers.

C.

Use an Amazon SageMaker launch configuration to encrypt the data once it is copied to the SageMakerinstance in a VPC. Use the SageMaker principal component analysis (PCA) algorithm to reduce the lengthof the credit card numbers.

D.

Use AWS KMS to encrypt the data on Amazon S3 and Amazon SageMaker, and redact the credit card numbers from the customer data with AWS Glue.

Buy Now
Question # 101

A Machine Learning Specialist is using Apache Spark for pre-processing training data As part of the Spark pipeline, the Specialist wants to use Amazon SageMaker for training a model and hosting it Which of the following would the Specialist do to integrate the Spark application with SageMaker? (Select THREE)

Options:

A.

Download the AWS SDK for the Spark environment

B.

Install the SageMaker Spark library in the Spark environment.

C.

Use the appropriate estimator from the SageMaker Spark Library to train a model.

D.

Compress the training data into a ZIP file and upload it to a pre-defined Amazon S3 bucket.

E.

Use the sageMakerModel. transform method to get inferences from the model hosted in SageMaker

F.

Convert the DataFrame object to a CSV file, and use the CSV file as input for obtaining inferences from SageMaker.

Buy Now
Question # 102

A finance company has collected stock return data for 5.000 publicly traded companies. A financial analyst has a dataset that contains 2.000 attributes for each company. The financial analyst wants to use Amazon SageMaker to identify the top 15 attributes that are most valuable to predict future stock returns.

Which solution will meet these requirements with the LEAST operational overhead?

Options:

A.

Use the linear learner algorithm in SageMaker to train a linear regression model to predict the stock returns. Identify the most predictive features by ranking absolute coefficient values.

B.

Use random forest regression in SageMaker to train a model to predict the stock returns. Identify the most predictive features based on Gini importance scores.

C.

Use an Amazon SageMaker Data Wrangler quick model visualization to predict the stock returns. Identify the most predictive features based on the quick model's feature importance scores.

D.

Use Amazon SageMaker Autopilot to build a regression model to predict the stock returns. Identify the most predictive features based on an Amazon SageMaker Clarify report.

Buy Now
Exam Code: MLS-C01
Exam Name: AWS Certified Machine Learning - Specialty
Last Update: Jun 15, 2025
Questions: 330
MLS-C01 pdf

MLS-C01 PDF

$34  $84.99
MLS-C01 Engine

MLS-C01 Testing Engine

$38  $94.99
MLS-C01 PDF + Engine

MLS-C01 PDF + Testing Engine

$54  $134.99