Weekend Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: bigdisc65

MLS-C01 Exam Dumps - Amazon Web Services AWS Certified Specialty Questions and Answers

Question # 4

A machine learning (ML) specialist is running an Amazon SageMaker hyperparameter optimization job for a model that is based on the XGBoost algorithm. The ML specialist selects Root Mean Square Error (RMSE) as the objective evaluation metric.

The ML specialist discovers that the model is overfitting and cannot generalize well on the validation data. The ML specialist decides to resolve the model overfitting by using SageMaker automatic model tuning (AMT).

Which solution will meet this requirement?

Options:

A.

Configure SageMaker AMT to use a static range of hyperparameter values.

B.

Configure SageMaker AMT to increase the number of parallel training jobs.

C.

Configure SageMaker AMT to stop training jobs early.

D.

Configure SageMaker AMT to run the training jobs with a warm start.

Buy Now
Question # 5

A data engineer needs to provide a team of data scientists with the appropriate dataset to run machine learning training jobs. The data will be stored in Amazon S3. The data engineer is obtaining the data from an Amazon Redshift database and is using join queries to extract a single tabular dataset. A portion of the schema is as follows:

...traction Timestamp (Timeslamp)

...JName(Varchar)

...JNo (Varchar)

Th data engineer must provide the data so that any row with a CardNo value of NULL is removed. Also, the TransactionTimestamp column must be separated into a TransactionDate column and a isactionTime column Finally, the CardName column must be renamed to NameOnCard.

The data will be extracted on a monthly basis and will be loaded into an S3 bucket. The solution must minimize the effort that is needed to set up infrastructure for the ingestion and transformation. The solution must be automated and must minimize the load on the Amazon Redshift cluster

Which solution meets these requirements?

Options:

A.

Set up an Amazon EMR cluster Create an Apache Spark job to read the data from the Amazon Redshift cluster and transform the data. Load the data into the S3 bucket. Schedule the job to run monthly.

B.

Set up an Amazon EC2 instance with a SQL client tool, such as SQL Workbench/J. to query the data from the Amazon Redshift cluster directly. Export the resulting dataset into a We. Upload the file into the S3 bucket. Perform these tasks monthly.

C.

Set up an AWS Glue job that has the Amazon Redshift cluster as the source and the S3 bucket as the destination Use the built-in transforms Filter, Map. and RenameField to perform the required transformations. Schedule the job to run monthly.

D.

Use Amazon Redshift Spectrum to run a query that writes the data directly to the S3 bucket. Create an AWS Lambda function to run the query monthly

Buy Now
Question # 6

A company operates an amusement park. The company wants to collect, monitor, and store real-time traffic data at several park entrances by using strategically placed cameras. The company's security team must be able to immediately access the data for viewing. Stored data must be indexed and must be accessible to the company's data science team.

Which solution will meet these requirements MOST cost-effectively?

Options:

A.

Use Amazon Kinesis Video Streams to ingest, index, and store the data. Use the built-in integration with Amazon Rekognition for viewing by the security team.

B.

Use Amazon Kinesis Video Streams to ingest, index, and store the data. Use the built-in HTTP live streaming (HLS) capability for viewing by the security team.

C.

Use Amazon Rekognition Video and the GStreamer plugin to ingest the data for viewing by the security team. Use Amazon Kinesis Data Streams to index and store the data.

D.

Use Amazon Data Firehose to ingest, index, and store the data. Use the built-in HTTP live streaming (HLS) capability for viewing by the security team.

Buy Now
Question # 7

A Marketing Manager at a pet insurance company plans to launch a targeted marketing campaign on social media to acquire new customers Currently, the company has the following data in Amazon Aurora

• Profiles for all past and existing customers

• Profiles for all past and existing insured pets

• Policy-level information

• Premiums received

• Claims paid

What steps should be taken to implement a machine learning model to identify potential new customers on social media?

Options:

A.

Use regression on customer profile data to understand key characteristics of consumer segments Find similar profiles on social media.

B.

Use clustering on customer profile data to understand key characteristics of consumer segments Find similar profiles on social media.

C.

Use a recommendation engine on customer profile data to understand key characteristics of consumer segments. Find similar profiles on social media

D.

Use a decision tree classifier engine on customer profile data to understand key characteristics of consumer segments. Find similar profiles on social media

Buy Now
Question # 8

A company is building a line-counting application for use in a quick-service restaurant. The company wants to use video cameras pointed at the line of customers at a given register to measure how many people are in line and deliver notifications to managers if the line grows too long. The restaurant locations have limited bandwidth for connections to external services and cannot accommodate multiple video streams without impacting other operations.

Which solution should a machine learning specialist implement to meet these requirements?

Options:

A.

Install cameras compatible with Amazon Kinesis Video Streams to stream the data to AWS over the restaurant's existing internet connection. Write an AWS Lambda function to take an image and send it to Amazon Rekognition to count the number of faces in the image. Send an Amazon Simple Notification Service (Amazon SNS) notification if the line is too long.

B.

Deploy AWS DeepLens cameras in the restaurant to capture video. Enable Amazon Rekognition on the AWS DeepLens device, and use it to trigger a local AWS Lambda function when a person is recognized. Use the Lambda function to send an Amazon Simple Notification Service (Amazon SNS) notification if the line is too long.

C.

Build a custom model in Amazon SageMaker to recognize the number of people in an image. Install cameras compatible with Amazon Kinesis Video Streams in the restaurant. Write an AWS Lambda function to take an image. Use the SageMaker endpoint to call the model to count people. Send an Amazon Simple Notification Service (Amazon SNS) notification if the line is too long.

D.

Build a custom model in Amazon SageMaker to recognize the number of people in an image. Deploy AWS DeepLens cameras in the restaurant. Deploy the model to the cameras. Deploy an AWS Lambda function to the cameras to use the model to count people and send an Amazon Simple Notification Service (Amazon SNS) notification if the line is too long.

Buy Now
Question # 9

A Data Scientist needs to migrate an existing on-premises ETL process to the cloud The current process runs at regular time intervals and uses PySpark to combine and format multiple large data sources into a single consolidated output for downstream processing

The Data Scientist has been given the following requirements for the cloud solution

* Combine multiple data sources

* Reuse existing PySpark logic

* Run the solution on the existing schedule

* Minimize the number of servers that will need to be managed

Which architecture should the Data Scientist use to build this solution?

Options:

A.

Write the raw data to Amazon S3 Schedule an AWS Lambda function to submit a Spark step to a persistent Amazon EMR cluster based on the existing schedule Use the existing PySpark logic to run the ETL job on the EMR cluster Output the results to a "processed" location m Amazon S3 that is accessible tor downstream use

B.

Write the raw data to Amazon S3 Create an AWS Glue ETL job to perform the ETL processing against the input data Write the ETL job in PySpark to leverage the existing logic Create a new AWS Glue trigger to trigger the ETL job based on the existing schedule Configure the output target of the ETL job to write to a "processed" location in Amazon S3 that is accessible for downstream use.

C.

Write the raw data to Amazon S3 Schedule an AWS Lambda function to run on the existing schedule and process the input data from Amazon S3 Write the Lambda logic in Python and implement the existing PySpartc logic to perform the ETL process Have the Lambda function output the results to a "processed" location in Amazon S3 that is accessible for downstream use

D.

Use Amazon Kinesis Data Analytics to stream the input data and perform realtime SQL queries against the stream to carry out the required transformations within the stream Deliver the output results to a "processed" location in Amazon S3 that is accessible for downstream use

Buy Now
Question # 10

A manufacturing company needs to identify returned smartphones that have been damaged by moisture. The company has an automated process that produces 2.000 diagnostic values for each phone. The database contains more than five million phone evaluations. The evaluation process is consistent, and there are no missing values in the data. A machine learning (ML) specialist has trained an Amazon SageMaker linear learner ML model to classify phones as moisture damaged or not moisture damaged by using all available features. The model's F1 score is 0.6.

What changes in model training would MOST likely improve the model's F1 score? (Select TWO.)

Options:

A.

Continue to use the SageMaker linear learner algorithm. Reduce the number of features with the SageMaker principal component analysis (PCA) algorithm.

B.

Continue to use the SageMaker linear learner algorithm. Reduce the number of features with the scikit-iearn multi-dimensional scaling (MDS) algorithm.

C.

Continue to use the SageMaker linear learner algorithm. Set the predictor type to regressor.

D.

Use the SageMaker k-means algorithm with k of less than 1.000 to train the model

E.

Use the SageMaker k-nearest neighbors (k-NN) algorithm. Set a dimension reduction target of less than 1,000 to train the model.

Buy Now
Question # 11

A machine learning (ML) specialist is building a credit score model for a financial institution. The ML specialist has collected data for the previous 3 years of transactions and third-party metadata that is related to the transactions.

After the ML specialist builds the initial model, the ML specialist discovers that the model has low accuracy for both the training data and the test data. The ML specialist needs to improve the accuracy of the model.

Which solutions will meet this requirement? (Select TWO.)

Options:

A.

Increase the number of passes on the existing training data. Perform more hyperparameter tuning.

B.

Increase the amount of regularization. Use fewer feature combinations.

C.

Add new domain-specific features. Use more complex models.

D.

Use fewer feature combinations. Decrease the number of numeric attribute bins.

E.

Decrease the amount of training data examples. Reduce the number of passes on the existing training data.

Buy Now
Question # 12

A data scientist is training a large PyTorch model by using Amazon SageMaker. It takes 10 hours on average to train the model on GPU instances. The data scientist suspects that training is not converging and that

resource utilization is not optimal.

What should the data scientist do to identify and address training issues with the LEAST development effort?

Options:

A.

Use CPU utilization metrics that are captured in Amazon CloudWatch. Configure a CloudWatch alarm to stop the training job early if low CPU utilization occurs.

B.

Use high-resolution custom metrics that are captured in Amazon CloudWatch. Configure an AWS Lambda function to analyze the metrics and to stop the training job early if issues are detected.

C.

Use the SageMaker Debugger vanishing_gradient and LowGPUUtilization built-in rules to detect issues and to launch the StopTrainingJob action if issues are detected.

D.

Use the SageMaker Debugger confusion and feature_importance_overweight built-in rules to detect issues and to launch the StopTrainingJob action if issues are detected.

Buy Now
Question # 13

A pharmaceutical company performs periodic audits of clinical trial sites to quickly resolve critical findings. The company stores audit documents in text format. Auditors have requested help from a data science team to quickly analyze the documents. The auditors need to discover the 10 main topics within the documents to prioritize and distribute the review work among the auditing team members. Documents that describe adverse events must receive the highest priority.

A data scientist will use statistical modeling to discover abstract topics and to provide a list of the top words for each category to help the auditors assess the relevance of the topic.

Which algorithms are best suited to this scenario? (Choose two.)

Options:

A.

Latent Dirichlet allocation (LDA)

B.

Random Forest classifier

C.

Neural topic modeling (NTM)

D.

Linear support vector machine

E.

Linear regression

Buy Now
Exam Code: MLS-C01
Exam Name: AWS Certified Machine Learning - Specialty
Last Update: Jun 15, 2025
Questions: 330
MLS-C01 pdf

MLS-C01 PDF

$29.75  $84.99
MLS-C01 Engine

MLS-C01 Testing Engine

$33.25  $94.99
MLS-C01 PDF + Engine

MLS-C01 PDF + Testing Engine

$47.25  $134.99