Summer Limited Time 60% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: dealsixty

MLS-C01 Exam Dumps - Amazon Web Services AWS Certified Specialty Questions and Answers

Question # 24

A company wants to create a data repository in the AWS Cloud for machine learning (ML) projects. The company wants to use AWS to perform complete ML lifecycles and wants to use Amazon S3 for the data storage. All of the company’s data currently resides on premises and is 40 ТВ in size.

The company wants a solution that can transfer and automatically update data between the on-premises object storage and Amazon S3. The solution must support encryption, scheduling, monitoring, and data integrity validation.

Which solution meets these requirements?

Options:

A.

Use the S3 sync command to compare the source S3 bucket and the destination S3 bucket. Determine which source files do not exist in the destination S3 bucket and which source files were modified.

B.

Use AWS Transfer for FTPS to transfer the files from the on-premises storage to Amazon S3.

C.

Use AWS DataSync to make an initial copy of the entire dataset. Schedule subsequent incremental transfers of changing data until the final cutover from on premises to AWS.

D.

Use S3 Batch Operations to pull data periodically from the on-premises storage. Enable S3 Versioning on the S3 bucket to protect against accidental overwrites.

Buy Now
Question # 25

A media company wants to create a solution that identifies celebrities in pictures that users upload. The company also wants to identify the IP address and the timestamp details from the users so the company can prevent users from uploading pictures from unauthorized locations.

Which solution will meet these requirements with LEAST development effort?

Options:

A.

Use AWS Panorama to identify celebrities in the pictures. Use AWS CloudTrail to capture IP address and timestamp details.

B.

Use AWS Panorama to identify celebrities in the pictures. Make calls to the AWS Panorama Device SDK to capture IP address and timestamp details.

C.

Use Amazon Rekognition to identify celebrities in the pictures. Use AWS CloudTrail to capture IP address and timestamp details.

D.

Use Amazon Rekognition to identify celebrities in the pictures. Use the text detection feature to capture IP address and timestamp details.

Buy Now
Question # 26

When submitting Amazon SageMaker training jobs using one of the built-in algorithms, which common parameters MUST be specified? (Select THREE.)

Options:

A.

The training channel identifying the location of training data on an Amazon S3 bucket.

B.

The validation channel identifying the location of validation data on an Amazon S3 bucket.

C.

The 1AM role that Amazon SageMaker can assume to perform tasks on behalf of the users.

D.

Hyperparameters in a JSON array as documented for the algorithm used.

E.

The Amazon EC2 instance class specifying whether training will be run using CPU or GPU.

F.

The output path specifying where on an Amazon S3 bucket the trained model will persist.

Buy Now
Question # 27

A Machine Learning Specialist observes several performance problems with the training portion of a machine learning solution on Amazon SageMaker The solution uses a large training dataset 2 TB in size and is using the SageMaker k-means algorithm The observed issues include the unacceptable length of time it takes before the training job launches and poor I/O throughput while training the model

What should the Specialist do to address the performance issues with the current solution?

Options:

A.

Use the SageMaker batch transform feature

B.

Compress the training data into Apache Parquet format.

C.

Ensure that the input mode for the training job is set to Pipe.

D.

Copy the training dataset to an Amazon EFS volume mounted on the SageMaker instance.

Buy Now
Question # 28

A company ingests machine learning (ML) data from web advertising clicks into an Amazon S3 data lake. Click data is added to an Amazon Kinesis data stream by using the Kinesis Producer Library (KPL). The data is loaded into the S3 data lake from the data stream by using an Amazon Kinesis Data Firehose delivery stream. As the data volume increases, an ML specialist notices that the rate of data ingested into Amazon S3 is relatively constant. There also is an increasing backlog of data for Kinesis Data Streams and Kinesis Data Firehose to ingest.

Which next step is MOST likely to improve the data ingestion rate into Amazon S3?

Options:

A.

Increase the number of S3 prefixes for the delivery stream to write to.

B.

Decrease the retention period for the data stream.

C.

Increase the number of shards for the data stream.

D.

Add more consumers using the Kinesis Client Library (KCL).

Buy Now
Question # 29

A manufacturing company has structured and unstructured data stored in an Amazon S3 bucket A Machine Learning Specialist wants to use SQL to run queries on this data. Which solution requires the LEAST effort to be able to query this data?

Options:

A.

Use AWS Data Pipeline to transform the data and Amazon RDS to run queries.

B.

Use AWS Glue to catalogue the data and Amazon Athena to run queries

C.

Use AWS Batch to run ETL on the data and Amazon Aurora to run the quenes

D.

Use AWS Lambda to transform the data and Amazon Kinesis Data Analytics to run queries

Buy Now
Question # 30

A manufacturing company wants to use machine learning (ML) to automate quality control in its facilities. The facilities are in remote locations and have limited internet connectivity. The company has 20 ТВ of training data that consists of labeled images of defective product parts. The training data is in the corporate on-premises data center.

The company will use this data to train a model for real-time defect detection in new parts as the parts move on a conveyor belt in the facilities. The company needs a solution that minimizes costs for compute infrastructure and that maximizes the scalability of resources for training. The solution also must facilitate the company’s use of an ML model in the low-connectivity environments.

Which solution will meet these requirements?

Options:

A.

Move the training data to an Amazon S3 bucket. Train and evaluate the model by using Amazon SageMaker. Optimize the model by using SageMaker Neo. Deploy the model on a SageMaker hosting services endpoint.

B.

Train and evaluate the model on premises. Upload the model to an Amazon S3 bucket. Deploy the model on an Amazon SageMaker hosting services endpoint.

C.

Move the training data to an Amazon S3 bucket. Train and evaluate the model by using Amazon SageMaker. Optimize the model by using SageMaker Neo. Set up an edge device in the manufacturing facilities with AWS IoT Greengrass. Deploy the model on the edge device.

D.

Train the model on premises. Upload the model to an Amazon S3 bucket. Set up an edge device in the manufacturing facilities with AWS IoT Greengrass. Deploy the model on the edge device.

Buy Now
Question # 31

An ecommerce company is automating the categorization of its products based on images. A data scientist has trained a computer vision model using the Amazon SageMaker image classification algorithm. The images for each product are classified according to specific product lines. The accuracy of the model is too low when categorizing new products. All of the product images have the same dimensions and are stored within an Amazon S3 bucket. The company wants to improve the model so it can be used for new products as soon as possible.

Which steps would improve the accuracy of the solution? (Choose three.)

Options:

A.

Use the SageMaker semantic segmentation algorithm to train a new model to achieve improved accuracy.

B.

Use the Amazon Rekognition DetectLabels API to classify the products in the dataset.

C.

Augment the images in the dataset. Use open-source libraries to crop, resize, flip, rotate, and adjust the brightness and contrast of the images.

D.

Use a SageMaker notebook to implement the normalization of pixels and scaling of the images. Store the new dataset in Amazon S3.

E.

Use Amazon Rekognition Custom Labels to train a new model.

F.

Check whether there are class imbalances in the product categories, and apply oversampling or undersampling as required. Store the new dataset in Amazon S3.

Buy Now
Question # 32

A company wants to use automatic speech recognition (ASR) to transcribe messages that are less than 60 seconds long from a voicemail-style application. The company requires the correct identification of 200 unique product names, some of which have unique spellings or pronunciations.

The company has 4,000 words of Amazon SageMaker Ground Truth voicemail transcripts it can use to customize the chosen ASR model. The company needs to ensure that everyone can update their customizations multiple times each hour.

Which approach will maximize transcription accuracy during the development phase?

Options:

A.

Use a voice-driven Amazon Lex bot to perform the ASR customization. Create customer slots within the bot that specifically identify each of the required product names. Use the Amazon Lex synonym mechanism to provide additional variations of each product name as mis-transcriptions are identified in development.

B.

Use Amazon Transcribe to perform the ASR customization. Analyze the word confidence scores in the transcript, and automatically create or update a custom vocabulary file with any word that has a confidence score below an acceptable threshold value. Use this updated custom vocabulary file in all future transcription tasks.

C.

Create a custom vocabulary file containing each product name with phonetic pronunciations, and use it with Amazon Transcribe to perform the ASR customization. Analyze the transcripts and manually update the custom vocabulary file to include updated or additional entries for those names that are not being correctly identified.

D.

Use the audio transcripts to create a training dataset and build an Amazon Transcribe custom language model. Analyze the transcripts and update the training dataset with a manually corrected version of transcripts where product names are not being transcribed correctly. Create an updated custom language model.

Buy Now
Question # 33

A business to business (B2B) ecommerce company wants to develop a fair and equitable risk mitigation strategy to reject potentially fraudulent transactions. The company wants to reject fraudulent transactions despite the possibility of losing some profitable transactions or customers.

Which solution will meet these requirements with the LEAST operational effort?

Options:

A.

Use Amazon SageMaker to approve transactions only for products the company has sold in the past.

B.

Use Amazon SageMaker to train a custom fraud detection model based on customer data.

C.

Use the Amazon Fraud Detector prediction API to approve or deny any activities that Fraud Detector identifies as fraudulent.

D.

Use the Amazon Fraud Detector prediction API to identify potentially fraudulent activities so the company can review the activities and reject fraudulent transactions.

Buy Now
Exam Code: MLS-C01
Exam Name: AWS Certified Machine Learning - Specialty
Last Update: Jun 15, 2025
Questions: 330
MLS-C01 pdf

MLS-C01 PDF

$34  $84.99
MLS-C01 Engine

MLS-C01 Testing Engine

$38  $94.99
MLS-C01 PDF + Engine

MLS-C01 PDF + Testing Engine

$54  $134.99