A company wants to create a data repository in the AWS Cloud for machine learning (ML) projects. The company wants to use AWS to perform complete ML lifecycles and wants to use Amazon S3 for the data storage. All of the company’s data currently resides on premises and is 40 ТВ in size.
The company wants a solution that can transfer and automatically update data between the on-premises object storage and Amazon S3. The solution must support encryption, scheduling, monitoring, and data integrity validation.
Which solution meets these requirements?
A media company wants to create a solution that identifies celebrities in pictures that users upload. The company also wants to identify the IP address and the timestamp details from the users so the company can prevent users from uploading pictures from unauthorized locations.
Which solution will meet these requirements with LEAST development effort?
When submitting Amazon SageMaker training jobs using one of the built-in algorithms, which common parameters MUST be specified? (Select THREE.)
A Machine Learning Specialist observes several performance problems with the training portion of a machine learning solution on Amazon SageMaker The solution uses a large training dataset 2 TB in size and is using the SageMaker k-means algorithm The observed issues include the unacceptable length of time it takes before the training job launches and poor I/O throughput while training the model
What should the Specialist do to address the performance issues with the current solution?
A company ingests machine learning (ML) data from web advertising clicks into an Amazon S3 data lake. Click data is added to an Amazon Kinesis data stream by using the Kinesis Producer Library (KPL). The data is loaded into the S3 data lake from the data stream by using an Amazon Kinesis Data Firehose delivery stream. As the data volume increases, an ML specialist notices that the rate of data ingested into Amazon S3 is relatively constant. There also is an increasing backlog of data for Kinesis Data Streams and Kinesis Data Firehose to ingest.
Which next step is MOST likely to improve the data ingestion rate into Amazon S3?
A manufacturing company has structured and unstructured data stored in an Amazon S3 bucket A Machine Learning Specialist wants to use SQL to run queries on this data. Which solution requires the LEAST effort to be able to query this data?
A manufacturing company wants to use machine learning (ML) to automate quality control in its facilities. The facilities are in remote locations and have limited internet connectivity. The company has 20 ТВ of training data that consists of labeled images of defective product parts. The training data is in the corporate on-premises data center.
The company will use this data to train a model for real-time defect detection in new parts as the parts move on a conveyor belt in the facilities. The company needs a solution that minimizes costs for compute infrastructure and that maximizes the scalability of resources for training. The solution also must facilitate the company’s use of an ML model in the low-connectivity environments.
Which solution will meet these requirements?
An ecommerce company is automating the categorization of its products based on images. A data scientist has trained a computer vision model using the Amazon SageMaker image classification algorithm. The images for each product are classified according to specific product lines. The accuracy of the model is too low when categorizing new products. All of the product images have the same dimensions and are stored within an Amazon S3 bucket. The company wants to improve the model so it can be used for new products as soon as possible.
Which steps would improve the accuracy of the solution? (Choose three.)
A company wants to use automatic speech recognition (ASR) to transcribe messages that are less than 60 seconds long from a voicemail-style application. The company requires the correct identification of 200 unique product names, some of which have unique spellings or pronunciations.
The company has 4,000 words of Amazon SageMaker Ground Truth voicemail transcripts it can use to customize the chosen ASR model. The company needs to ensure that everyone can update their customizations multiple times each hour.
Which approach will maximize transcription accuracy during the development phase?
A business to business (B2B) ecommerce company wants to develop a fair and equitable risk mitigation strategy to reject potentially fraudulent transactions. The company wants to reject fraudulent transactions despite the possibility of losing some profitable transactions or customers.
Which solution will meet these requirements with the LEAST operational effort?